

Deadline 7: Applicant's Response to the Examining Authority's Further Written Questions (ExQ4)

Appendix A - Kemsley K3 CHP R1 Supporting Information, April 2019

Wheelabrator Kemsley (K3 Generating Station) and Wheelabrator Kemsley North (WKN) Waste to Energy Facility Development Consent Order

PINS Ref: EN010083

Document 15.2

August 2020 - Deadline 7





# Kemsley K3 CHP

**R1 APPLICATION SUPPORTING INFORMATION** 

**30TH APRIL 2020** 



# 1 Design Data

The following data for the Kemsley K3 CHP Facility has been used for the purposes of the R1 calculation.

| Description                                  | Value           | Units                |
|----------------------------------------------|-----------------|----------------------|
| Boiler Lines                                 | 2               | lines                |
| Operational hours                            | 8,000           | hours/year           |
| Non-operational Hours                        | 760             | hours/year           |
| Waste consumption (nominal design            | 35              | tonnes/hour per line |
| capacity)                                    |                 |                      |
| Waste NCV at design point                    | 10,500          | kJ/kg                |
| Gross power generation                       | 49.9            | MWe                  |
| Parasitic load                               | 6.4             | MWe                  |
| Steam exported                               | 560,000         | tonnes/year          |
| Steam export temperature                     | 220             | °C                   |
| Steam export pressure                        | 11.3            | bara                 |
| Condensate returned                          | 560,000         | tonnes/year          |
| Condensate enthalpy                          | 209             | kJ/kg                |
| Fuel oil consumed on cold start up per line  | 36,200          | kg per line          |
| Fuel oil consumed on warm start up per line  | 18,100          | kg per line          |
| Fuel oil consumed on shut down per line      | 14,800          | kg per line          |
| Fuel oil consumed for other uses. Including; | 125,000         | kg per line          |
| <ul> <li>Maintaining furnace T2S</li> </ul>  |                 |                      |
| temperature above 850°C                      |                 |                      |
| <ul> <li>Routine burner testing</li> </ul>   |                 |                      |
| Fuel oil NCV                                 | 42,800          | kJ/kg                |
| Fuel oil density                             | 0.82            | kg/l                 |
| Primary air flow                             | 86,337          | Nm3/hr per line      |
| Primary air temperature                      | 175             | °C                   |
| Primary air density                          | 0.79            | kg/Nm3               |
| Secondary and Tertiary air flow              | 28,760 & 28,693 | Nm3/hr per line      |
| Secondary and Tertiary air temperature       | 175             | °C                   |
| Secondary and Tertiary air density           | 0.79            | kg/Nm3               |
| Soot blowing steam flowrate (average per     | 1.18            | tonnes/day per line  |
| line per hour)                               |                 |                      |
| Soot blowing steam temperature               | 430             | °C                   |
| Soot blowing steam pressure                  | 30              | barg                 |
| Steam produced by each boiler at 100% MCR    | 135.5           | tonnes/hr per line   |
| Steam supply to ActiLAB for reactivation of  | 0.125           | tonnes/hr per line   |
| unspent lime                                 |                 |                      |
| Steam supply to ActiLAB enthalpy             | 2752.65         | kJ/kg                |
| Superheated steam temperature at outlet of   | 430             | °C                   |
| boiler                                       |                 |                      |



| Superheated steam pressure at outlet of | 75     | barg               |  |  |
|-----------------------------------------|--------|--------------------|--|--|
| boiler                                  |        |                    |  |  |
| Boiler feedwater flowrate               | 133.7  | tonnes/hr per line |  |  |
| Boiler feedwater enthalpy               | 585.76 | kJ/kg              |  |  |
| Boiler design efficiency                | 88.3   | %                  |  |  |

## 2 Supporting evidence

- Process flow diagram (Water and steam): AAK-04-0202\_64P0003-C-PFD WATER AND STEAM (Case 10). This is based on the design case (DP2) with a Gross electrical output of 49.9MWe with 68.75tonnes/hr steam export.
- Process flow diagram (Air and flue gas): AAK-04-0202\_65P0001-L-PFD AIR AND FLUE GAS (Normal operating conditions)
  - This is based on the design case (DP2) with a Gross electrical output of 49.9MWe with 68.75tonnes/hr steam export. See section Point DP2 Nominal.
- Sootblowing steam consumption: AAK-04-14580102\_FFG0003-A-DETAILED CHARACTERISTICS SOOTBLOWING SYSTEM.
  - Note that this document includes the steam consumption for all sootblowers within the facility. This equates to 112 sootblowers in total (56 per boiler line).
  - The document bases its calculation on completing 3 sootblowing cycles every 24 hours with a 56.67 tonnes (36.41 + 14.51 + 5.75) of steam consumed in a 24 hour period. This equates to a consumption of 1.18 tonnes/hr per line.
- Fuel oil datasheet: Gas Oil BS2869 Spec Dec 2017

# 3 Assumptions

The following assumptions on the design and performance for K3 CHP have been used for the purposes of the R1 calculation. These assumptions are based on developed design data and performance guarantees provided by the EPC contractor. Where applicable, conservative assumptions on operational parameters based on our experience of similar facilities have been made.

- The availability of the facility will be 8,000 hours/year.
- The auxiliary fuel will be fuel oil. No other auxiliary fuels will be combusted at the facility.
- Power demand during outage periods comprises of 30% of the parasitic load.
- There will be 6 start ups / shutdowns per line per year consisting of 3 cold start ups and 3 warm start ups.
- It is assumed 125,000 kg of fuel oil will be consumed per line per annum for maintaining furnace T2S temperature above 850°C and for carrying out routine burner operating tests.
- The minimum steam export supply will be 560,000 tonnes/year
- Sootblowing sequence will be completed 3 times per day per line.



## 4 Calculations

#### 4.1 Gross Electricity

The gross electrical generation of the facility was calculated as follows:

Gross electrical generation = Gross power generation (MW<sub>e</sub>) x Operating hours

= 49.9 (MW<sub>e</sub>) x 8,000 (hours)

= 399,200 MWh

## 4.2 Electricity Exported

The electricity exported – net output of the facility was calculated as follows:

Electricity exported = (Gross power generation – Parasitic power) (MW<sub>e</sub>) x Operating time (hours)

 $= (49.9 (MW_e) - 6.4 (MW_e)) \times 8,000 (hours)$ 

= 348,000 MWh

#### 4.3 Electricity Imported

The electricity imported – net input to the facility was calculated as follows:

Electricity imported = Parasitic power (MW<sub>e</sub>) x Requirement during outage period x Non-operating time (hours)

= 6.4 (MW<sub>e</sub>) x 0.3 x 760 (hours)

= 1,459.2 MWh

## 4.4 Auxiliary Fuel Inputs

The annual auxiliary fuel input was calculated as follows:

```
Auxiliary fuel input =
```

Cold Start up fuel (kg/line) + Warm Start up fuel (kg/line) + Shut down fuel (kg/line) + other fuel use (kg/line)] x Lines

Fuel density (kg/litre)

```
=\frac{\left[\left(36{,}200 \times 3 (\text{startups})\right) + \left(18{,}100 \times 3 (\text{startups})\right) + \left(14{,}800 \times 6 (\text{shutdowns})\right) + 125{,}000\right] \times 2 (\text{lines})}{0.82 (\text{kg/litre})}
```

= 918,780 litres

#### 4.5 Primary Combustion Air (Heated)

The annual heated primary combustion air flow was calculated as follows:

Primary combustion air = Primary combustion air (Nm<sub>3</sub>/hour) x Lines x Operating time (hours)

```
= 86,337 (Nm<sub>3</sub>/hour per line) x 2 (lines) x 8,000 (hours)
```

= 1,381,392,000 Nm<sub>3</sub>



## 4.6 Secondary & Tertiary Combustion Air (Heated)

The annual heated secondary and tertiary combustion air flow was calculated as follows: Secondary & Tertiary combustion air = Secondary & Tertiary combustion air (Nm<sub>3</sub>/hour) x Lines x Operating time (hours)

```
= (28760 + 28693) (Nm<sub>3</sub>/hour per line) x 2 (lines) x 8,000 (hours) = 919,248,000 Nm<sub>3</sub>
```

#### 4.7 Soot Blowing

The annual steam used for soot blowing was calculated as follows: Steam for soot blowing = Soot blowing steam (tonnes/hour) x Lines x Operating time (hours)

```
= 1.18 (tonnes/hour per line) x 2 (lines) x 8,000 (hours) = 18,880 tonnes
```

#### 4.8 Steam supply to ActiLAB

The annual steam supply from the boiler drum to the ActiLAB for purposes of reactivating unspent lime was calculated as follows:

Steam from boiler drum = Steam flow to ActiLAB (tonnes/hour) x Lines x Operating time (hours)

```
= 0.125 (tonnes/hour per line) x 2 lines x 8,000 (hours) = 2,000 tonnes
```

## 4.9 Superheated Steam at Boiler Outlet

The annual superheated steam at the boiler outlet for the facility was calculated as follows: Superheated steam from boilers = Main steam flow rate (tonnes/hour) x Lines x Operating time (hours)

```
= 133.5 (tonnes/hour per line) x 2 lines x 8,000 (hours) = 2,136,000 tonnes
```

#### 4.10 Boiler Feedwater

The annual boiler feedwater used by the facility was calculated as follows:

Boiler feedwater = Boiler feedwater flow rate (tonnes/hour) x Lines x Operating time (hours)

= 133.7 (tonnes/hour per line) x 2 (lines) x 8,000 (hours) = 2,139,200 tonnes

| Continuation   Cont   |          | A                                             | В                                         | С          | D               | Е              | F             | G                  | Н                        | I                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------|-------------------------------------------|------------|-----------------|----------------|---------------|--------------------|--------------------------|-------------------------------------------|
| Siturations and processors of grant of the second of the s | 1        | PROFOR                                        | MA FOR DETERMINING ENERG                  | SY EFFICI  | ENCY US         | ING R1         |               |                    |                          |                                           |
| torning the spanning this community queries regarding this community queries regarding this community.    What data has been used in the application? —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                               | Facility, Barge Way,                      | reference  |                 |                |               |                    | 1                        |                                           |
| Contract If we have any queries regarding this form  year any contract if we have a secondary contract in which application?  Secondary Contract in West and the application?  Secondary | 3        | Operator name                                 | Wheelabrator                              |            |                 |                |               | Environment        |                          |                                           |
| Indicative RT factor (subject to confirmation)   0.93   reporting year   Contractive confirmation)   0.93   reporting year   Contractive confirmation   Co   |          | contact if we have any queries regarding this |                                           |            |                 |                |               |                    | Agend                    | СУ                                        |
| Deciding RT factor (autopact bit confirmation)   0.93   reporting year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5        | What data has been use                        | d in the application? →                   |            | Desi            | gn data        |               |                    |                          |                                           |
| Contraction      |          | Indicative R1 factor (subject                 |                                           | reporting  | Units           | U <sub>c</sub> | (Average over | Units              | parameters that have     | Reference to<br>Supporting<br>information |
| 10   2.   Estercitor yearport 4. Net input/output meter   346000 MWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7        | factor (optional)                             |                                           | •          |                 |                |               |                    |                          |                                           |
| 10   2   Electricity exported. Net imputoupput mater   1499 2   WhWh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | ·                                             |                                           |            |                 |                |               |                    |                          |                                           |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                               |                                           |            |                 |                |               |                    |                          | See PFD: AAK-04-0202                      |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11       | 3. Electricity imported - Net in              |                                           |            |                 |                |               |                    | Contractual guaranteed   |                                           |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | Other fuel inputs                             | 4.1 Light fuel oil                        | 918780     | litres          |                | 0.82          | kg/l               |                          |                                           |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14       |                                               |                                           | 2.30       |                 |                | 42800         | kJ/kg              | The calculation includes | Fue Fuel density see Fu                   |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                               | 4.∠ Naturai gas                           |            | NM <sup>-</sup> |                | 34200         | KJ/Nm <sup>3</sup> | <u> </u>                 |                                           |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                               | 4.3 LPG                                   |            | Nm <sup>3</sup> |                |               |                    |                          |                                           |
| 21   5   Primary combustion air (as supplied to furnace)   1381392000 m²   175   5   C   151.5   kJ/kg   175   C   C   C   C   C   C   C   C   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19       |                                               | 4.4 Other fuels similar to light fuel oil |            | litres          |                |               | kg/l               |                          |                                           |
| 175   C   Secondary combustion air (as supplied to furnace)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 5 Primary combustion air (as                  | supplied to furnace)                      | 1391303000 | m <sup>3</sup>  |                | 0.70          |                    |                          |                                           |
| 24   6. Secondary combustion air (as supplied to furnace)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22       | J. Filliary Combustion all (as                | supplied to idifface)                     | 1301392000 | 111             |                | 175           | °C                 |                          |                                           |
| 175   C   151.5   L/like   Secondary and tertiary   See PFD AAK-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 6 Secondary combustion air                    | (as supplied to furnace)                  | 919248000  | m <sup>3</sup>  |                |               |                    |                          | See PFD AAK-04-0202                       |
| 27 7   Recycled flue gas (as supplied to furnace)   m³   kg/km²   C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25       | o. Goodingary compaction an                   | (de dappilea le la liade)                 | 010240000  |                 |                | 175           | °C                 |                          |                                           |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | 7 Recycled flue gas (as supr                  | olied to furnace)                         |            | m <sup>3</sup>  |                | 151.5         |                    | Secondary and tertiary a | See PFD AAK-04-0202                       |
| 30   8.   Heat exported outside R1 boundary   8.1 steam exported   560000   bonnes   220 °C   1130   kPa   2866   kli/kg   2   | 28       | 7. Trooyolou nuo guo (uo oupp                 | oned to furnace)                          |            |                 |                |               | °C                 |                          |                                           |
| Section   Sect   |          | Heat exported outside R1 to                   | boundary                                  |            |                 |                | 0             | kJ/kg              |                          |                                           |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 31       |                                               |                                           | 560000     | tonnes          |                |               |                    |                          |                                           |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33       |                                               |                                           |            |                 |                |               |                    | Contractual minimum su   |                                           |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34       |                                               | condensate returned                       | 560000     | tonnes          |                |               | °C                 | -                        |                                           |
| 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36       |                                               |                                           |            |                 |                |               | kJ/kg              | Note: Condensate Enth    |                                           |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37       |                                               | 8.2 hot water exported                    |            | tonnes          |                |               | °C _               |                          |                                           |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39       |                                               |                                           |            |                 |                |               | kJ/kg              |                          |                                           |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                               | hot water returned                        |            | tonnes          |                |               |                    | +                        |                                           |
| 44   9. Internal steam use   9.1 for soot blowing (no backflow)   18880 tonnes   430 °C   30000 kPa    | 42       |                                               |                                           |            |                 |                |               |                    | 1                        |                                           |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | Internal steam use                            |                                           |            |                 |                |               |                    |                          |                                           |
| 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45       |                                               | 9.1 for soot blowing (no backflow)        | 18880      | tonnes          |                |               |                    | -                        |                                           |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47       |                                               |                                           |            |                 |                |               | kJ/kg              |                          | AAK-04-14580102_FFG                       |
| S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 48<br>49 |                                               | 9.2 for steam driven devices              |            | tonnes          |                |               |                    | -                        |                                           |
| S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50       |                                               |                                           |            |                 |                |               | kJ/kg              |                          |                                           |
| 54   9.3 for trace heating   10nnes   °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 51<br>52 |                                               | backflow as steam                         |            | tonnes          | 1              |               |                    | +                        |                                           |
| S5   S6   S6   S6   S6   S6   S6   S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53       |                                               | 0.2 for trace heating                     |            | tonnor          |                |               | kJ/kg              |                          |                                           |
| 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55       |                                               | 9.5 for trace neating                     |            | torines         |                |               | kPa                |                          |                                           |
| Second    | 56<br>57 |                                               | hackflow as condensate                    |            | tonnes          |                |               |                    |                          |                                           |
| 60   9.4 for re-heating flue gas   10nnes   °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58       |                                               | DUOINION AS CONTROLISATE                  |            |                 |                |               | kPa                | 1                        |                                           |
| 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59<br>60 |                                               | 9.4 for re-heating flue gas               |            | tonnes          |                |               |                    | -                        |                                           |
| 63   backflow as condensate   tonnes   °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61       |                                               |                                           |            |                 |                |               | kPa                | 1                        |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63       |                                               | backflow as condensate                    |            | tonnes          |                |               |                    |                          |                                           |
| 66   9.5 for concentration processes   tonnes   °C     KPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64<br>65 |                                               |                                           |            |                 |                |               |                    | +                        |                                           |
| 68 kJ/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66       |                                               | 9.5 for concentration processes           |            | tonnes          |                |               | °C                 |                          |                                           |
| 69   backflow as condensate   tonnes   "C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67<br>68 |                                               |                                           |            |                 |                |               |                    | +                        |                                           |
| KPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69       |                                               | backflow as condensate                    |            | tonnes          |                |               | °C                 |                          |                                           |
| 72 9.6 for building, equipment, tank heating tonnes °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 71       |                                               |                                           |            |                 |                |               |                    | <u></u>                  |                                           |
| 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 72       |                                               | 9.6 for building, equipment, tank heating |            | tonnes          |                |               | °C                 |                          |                                           |
| 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 74       |                                               |                                           |            |                 |                |               | kJ/kg              |                          |                                           |
| 75 backflow as condensate tonnes °C kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 75<br>76 |                                               | backflow as condensate                    |            | tonnes          |                |               |                    |                          |                                           |
| 77 kJ/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77       |                                               |                                           |            |                 |                |               | kJ/kg              |                          |                                           |
| 78 9.7 for deaeration and demineralisation tonnes °C kPa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78<br>79 |                                               | 9.7 for deaeration and demineralisation   |            | tonnes          |                |               |                    | -                        |                                           |
| 80 kJ/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80       |                                               |                                           |            |                 |                |               |                    | 1                        |                                           |

|          | A                                          | В                                                                                                                                                                                                  | С               | D              | Е           | F                     | G            | Н                          | ı                       |  |
|----------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-------------|-----------------------|--------------|----------------------------|-------------------------|--|
| 81       |                                            | backflow as condensate                                                                                                                                                                             |                 | tonnes         |             |                       | °C           |                            |                         |  |
| 82       |                                            |                                                                                                                                                                                                    |                 |                |             |                       | kPa          |                            |                         |  |
| 83<br>84 |                                            |                                                                                                                                                                                                    | 2000            | tonnes         |             | 297                   | kJ/kg<br>°C  |                            |                         |  |
| 85       |                                            | 9.8 other internal applications, in line with commission guidance, to be specified                                                                                                                 | 2000            | tonnes         |             | 297                   | kPa          |                            |                         |  |
| 86       |                                            | continussion guidance, to be specified                                                                                                                                                             |                 |                |             | 2752.65               |              | Steam supplied from bo     | See PFD: AAK-04-0202    |  |
| 87       |                                            | backflow as condensate                                                                                                                                                                             |                 | tonnes         |             | 2702.00               | °C           | осодин одружа поит во      | 000110:704101010202     |  |
| 88       |                                            | 1                                                                                                                                                                                                  |                 |                |             |                       | kPa          |                            |                         |  |
| 89       |                                            |                                                                                                                                                                                                    |                 |                |             |                       | kJ/kg        |                            |                         |  |
| 90       |                                            | 9.9 other internal applications, in line with                                                                                                                                                      |                 | tonnes         |             |                       | °C           |                            |                         |  |
| 91<br>92 |                                            | commission guidance, to be specified                                                                                                                                                               |                 |                |             |                       | kPa          |                            |                         |  |
| 93       |                                            | backflow as condensate                                                                                                                                                                             |                 | tonnes         |             |                       | kJ/kg<br>°C  |                            |                         |  |
| 94       |                                            | backnow as condensate                                                                                                                                                                              |                 | torinos        |             |                       | kPa          |                            |                         |  |
| 95       |                                            |                                                                                                                                                                                                    |                 |                |             |                       | kJ/kg        |                            |                         |  |
| 96       | <ol><li>Use of condensing energy</li></ol> | y from steam in flue gas                                                                                                                                                                           |                 | GJ             |             |                       |              |                            |                         |  |
|          | 11. Superheated steam at boile             | er outlet                                                                                                                                                                                          | 2136000         | tonnes         |             | 430                   |              |                            |                         |  |
| 98       |                                            |                                                                                                                                                                                                    |                 |                |             | 7500                  |              |                            |                         |  |
| 99       | 12. Boiler feedwater                       |                                                                                                                                                                                                    | 2139200         |                |             | 3227.12<br>141        |              |                            | See PFD: AAK-04-0202    |  |
| 101      | 12. Boiler leedwater                       | •                                                                                                                                                                                                  | 2139200         | tonnes         |             | 8770                  |              |                            |                         |  |
| 102      |                                            |                                                                                                                                                                                                    |                 |                |             | 585.76                |              | -                          | See PFD: AAK-04-0202    |  |
| 103      | 13. Boiler Efficiency (Design)             |                                                                                                                                                                                                    | 88%             | ±              | 1.5%        |                       |              | Contractual guaranteed     |                         |  |
| 104      | Instructions for complet                   | ing this spreadsheet                                                                                                                                                                               |                 |                |             |                       |              |                            |                         |  |
| 105      | 1.                                         | Ensure that you have completed the first three                                                                                                                                                     | ee rows of the  | application    | form        |                       |              |                            |                         |  |
|          | 2.                                         | This form should be accompanied by support                                                                                                                                                         | rting informati | on for the fig | ures quoted | . Where this infor    | mation is in | the permit application     | reference to the        |  |
| 106      |                                            | relevant sections of the application can be n                                                                                                                                                      |                 |                |             |                       |              |                            |                         |  |
|          |                                            | A Sankey diagram (or equivalent) reflecting                                                                                                                                                        |                 |                |             | l as well as any ret  | erences to   | physical properties is     | the absolute minimum    |  |
| 107      | 2                                          | that should be provided for an application batter with the colour coded the cells in this spream                                                                                                   |                 |                |             | - <b>f</b>            |              |                            | d balance The sections  |  |
| 108      | J.                                         | will disappear when data has been entered.                                                                                                                                                         |                 | ,              |             |                       |              |                            |                         |  |
|          |                                            | Blue cells require data that is essential for the                                                                                                                                                  |                 | ion, where in  | formation o | n uncertainty of the  | e data is av | ailable it would be use    | ful (but not            |  |
| 109      |                                            | mandatory) for this to be included for these placed Cells indicate that any data entered w                                                                                                         |                 | H- D4          | -4 Th       |                       |              |                            |                         |  |
| 110      |                                            | have data for all the input options.                                                                                                                                                               | iii be useu iii | ine Ki caicu   | auon. mey   | rilave been used v    | wiere uiere  | e is a crioice or inputs t | out not all plants will |  |
| 110      |                                            |                                                                                                                                                                                                    | vou need to     | make sure th   | at vou ente | r data into all the b | eige cells a | associated with the inp    | ut as they are all      |  |
| 111      |                                            | Where you are entering data into beige cells you need to make sure that you enter data into all the beige cells associated with the input as they are all needed for carrying out the calculation. |                 |                |             |                       |              |                            |                         |  |
|          |                                            | Yellow cells have been used to provide flexibility to include fuels or energy uses not identified elsewhere. Supporting information to explain why the                                             |                 |                |             |                       |              |                            |                         |  |
| 112      |                                            | standard fields were not appropriate or adequate will need to be provided where these cells are used.                                                                                              |                 |                |             |                       |              |                            |                         |  |
| 113      |                                            | Data entered in uncoloured cells are not used when calculating the R1 energy efficiency factor but can be completed to provide a more complete data set.                                           |                 |                |             |                       |              |                            |                         |  |
| 114      |                                            | Data in the purple cell for the CCF factor is optional. If used the way it was calculated must be explained in supporting information                                                              |                 |                |             |                       |              |                            |                         |  |
| 115      | 4.                                         | Ensure the temperatures entered into cells F19 and F22 (and F25) are the actual temperatures of the heated air in °C.                                                                              |                 |                |             |                       |              |                            |                         |  |
| 116      |                                            | The spreadsheet uses these values to calculate the specific enthalpy associated with heating the air from ambient 25 °C in cells F20 and F23 (and F26).                                            |                 |                |             |                       |              |                            |                         |  |
| 117      | 5.                                         | Densities used in cells F18 and F21 (and F24) should be at the temperatures at which the flows quoted in C18 and C21 (and C24) are reported.                                                       |                 |                |             |                       |              |                            |                         |  |
| 118      |                                            | The spreadsheet multiplies these pairs of entries to generate a mass of air.                                                                                                                       |                 |                |             |                       |              |                            |                         |  |
| 110      | 6.                                         | If you believe that any of the information that you have submitted in this application form is commercially confidential please identify the confidential                                          |                 |                |             |                       |              |                            |                         |  |
| 119      |                                            | information and the grounds on which you believe it to be confidential in your covering letter                                                                                                     |                 |                |             |                       |              |                            |                         |  |
|          | LIT 5753                                   |                                                                                                                                                                                                    |                 |                |             |                       |              |                            |                         |  |
| 120      | E4B/8848/11/8                              |                                                                                                                                                                                                    |                 |                |             |                       |              |                            |                         |  |
| 121      | EAD/0812/xls/v3                            |                                                                                                                                                                                                    |                 |                |             |                       |              |                            |                         |  |
| 121      |                                            |                                                                                                                                                                                                    |                 | 1              |             |                       |              |                            |                         |  |